

The world leader in serving science

The Challenge for Analysis

How do we get analytes out of these samples?

Thermo Fisher s c | e N T | F | C

The Answer is Sample Preparation

Analysis Technique

Sample Preparation.....

Sample Preparation.....

"Eighty Percent of the Variance in an Assay Usually Arises from the Sample Prep."

R. Stevenson, "Pittcon '98: Part 3, Sample Prep: The Place to Make a Difference" <u>American Laboratory</u>, Vol. 30, No. 14, p. 21, 1998.

The Important Parameters for Sample Prep

Solvent Use

- Amount of solvent consumed for the extraction
- Solvents are expensive; reducing use reduces costs
- Extraction Time
 - Amount of time required for each extraction to occur
 - Reducing extraction time increases lab throughput
- % Recovery
 - Amount of analyte recovered following the extraction
 - Low % recovery yields poor analytical results
- % Relative Standard Deviation (RSD)
 - Measure of reproducibility between extractions
 - Extraction results have greater reproducibility with lower %RSDs

These Parameters Evaluate SP Techniques

Important Parameters for Liquid-Solid Extraction

Parameter	Effect on the Extraction Process
Temperature	Elevated temperature increases analyte
	diffusion from the matrix and improves
	analyte solubility in the extraction solvent.
Pressure	Increased pressure enables liquid solvents to
	be used at high temperature.
Analyte Solubility	Increases as temperature increase to improve
	extraction efficiency (e.g. solubility of
	anthracene increases 13-fold in DCM (50°C
	to 150°C)).
Solvent Viscosity	Decreases as temperature increases.
	Improves solvent migration through the matrix
	to increase extraction efficiency.
Solvent Surface Tension	Decreases as temperature increases. Allows
	solvent to better coat the matrix and helps
	improve analyte diffusion.

Three Mechanisms Controlling Extractions

- 1. Transport of analyte X through sample particle, including overcoming analyte-matrix interactions and diffusion though sample particle.
- 2. Transport of analyte from particle surface to extracting fluid, overcoming adsorption energy at particle surface.
- 3. Transport of extracting fluid and analyte away from sample particle.

Increasing Temperature Accelerates Extraction

Higher temperature results in a curve that reaches maximum extraction yield faster

Thermo Fisher Scientific Dionex Sample Prep Product Line

Thermo Scientific Dionex ASE 150 and ASE 350 Accelerated Solvent Extractor Thermo Scientific Dionex AutoTrace 280 Solid-Phase Extraction (SPE) Instrument

V

Thermo Scientific Dionex SolEx SPE Cartridges

Genevac Rocket Evaporator

Novel & Innovative Solutions

Sample Preparation is Critical for Sample To Knowledge

In the Beginning There Was Soxhlet...

de facto standard for solvent extraction

Slow, high solvent usage

Now . . . Accelerated Solvent Extraction

- Automates sample preparation for solid and semisolid samples using solvents at elevated temperatures and pressure.
- Operates above the boiling point of extraction solvents by using sealed extraction cells.
- pH Hardened pathways allows use of strong acids and bases for sample pretreatment
- Well established and proven technique that is superior to Soxhlet and approved for U.S. EPA Method 3545A.

Thermo Scientific[™] Dionex[™] ASE[™] 350 Accelerated Solvent Extractor system

U.S. EPA Method 3545A.... Highlights

METHOD 3545A

PRESSURIZED FLUID EXTRACTION (PFE)

1.0 SCOPE AND APPLICATION

1.1 Method 3545 is a procedure for extracting water insoluble or slightly water soluble organic compounds from soils, clays, sediments, sludges, and waste solids. The method uses elevated temperature (100 - 180°C) and pressure (1500 - 2000 psi) to achieve analyte recoveries equivalent to those from Soxhlet extraction, using less solvent and taking significantly less time than the Soxhlet procedure. This procedure was developed and validated on a commercially-available, automated extraction system.

1.2 This method is applicable to the extraction of semivolatile organic compounds, organophosphorus pesticides, organochlorine pesticides, chlorinated herbicides, PCBs, and PCDDs/PCDFs, which may then be analyzed by a variety of chromatographic procedures.

1.3 This method has been validated for solid matrices containing 250 to 12,500 µg/kg of semivolatile organic compounds, 250 to 2500 µg/kg of organophosphorus pesticides, 5 to 250 µg/kg of organochlorine pesticides, 50 to 5000 µg/kg of chlorinated herbicides, 1 to 1400 µg/kg of PCBs, and 1 to 2500 ng/kg of PCDDs/PCDFs. The method may be applicable to samples containing these analytes at higher concentrations and may be employed after adequate performance has been demonstrated for the concentrations of interest (see Method 3500, Sec. 8.0).

How Does Accelerated Solvent Extraction Work?

Thermo Fisher S C I E N T I F I C

What About Thermally Labile Compounds and Carryover?

Accelerated Solvent Extraction, Non-, State Method Optimization, Thermally Labile Compounds arated Solvent Extraction, ASE, DDT, Endrin, Dicumyl Peroxide

To demonstrate that the accelerated solvent extraction technique can be used to extract thermally labile compounds with proper method optimization.

Accelerated solvent extraction is a sample preparation technique that uses elevated temperature and pressure to increase extraction efficiency in solid and semi-solid samples. This technique significantly reduces the amount of time and solvent required for extraction when compared to traditional techniques such as Soxhlet. Since elevated temperature is used to accomplish the extraction, the effect of thermal degradation was investigated to ascertain the viability of this technique for thermally labile compounds. Thermal degradation was not observed for DDT, endrin, and dicumyl peroxide in spiked sand samples at temperatures as high as 150 °C. These results demonstrate the versatility of the accelerated solvent extraction method and show that thermally labile compounds can be extracted in an optimized extraction method.

Accelerated lower case these two is a new extraction method that significantly streamlines sample preparation. A commonly used solvent is pumped into an extraction cell containing the sample, which is then brought to an elevated temperature and pressure. Minutes later, the extract is transferred from the heated cell to a standard collection vial for cleanup or analysis. The entire extraction process is fully automated and performed in minutes for fast and easy extraction with low solvent consumption.

Because extractions are performed at elevated temperatures using the accelerated solvent extraction method, thermal degradation could be a concern. This has been investigated, and no evidence of depradation has been investigated, and no evidence of degradation has been seen. The experiments reported here include monitoring the stability of thermally labile compounds during standard accelerated solvent extraction conditions (100 °C) as well as extractions done at higher temperatures (150 °C).

TN 206: Investigation of Thermal Degradation

The degradation of DDT and endrin during GC analysis is used as an indication of active sites or exc conditions.1 DDT breaks down to DDD and DDE, and endrin forms endrin aldehyde and endrin ketone. These same compounds were used to determine if thermal decomposition can occur during the accelerated solvent extraction method. Another temperature sensitive compound was also used as a probe to measure thermal and oxidative decomposition. Dicumyl peroxide (DCP) is used as a free radical generator in polymerization, and it is very sensitive to thermal depradation

· Thermo Scientific" Dionex" ASE" 200 Accelerated

Solvent Extractor system · Gas chromatograph (GC) with electron capture detector (ECD) Thermo Scientific[®] Dionex[®] DX-500 HPLC system with AD20 (UV detector)

> Thermo SCIENTIELC

Investigation of Carryover or

Solvent Extractor System

Cross-Contamination in the Thermo

Scientific Dionex ASE 200 Accelerator

TN 207: Investigation of Carryover

ASE Does Not Degrade Labile Compounds and is Exhaustive!

TN 206: Evaluating Thermal Degradation

Compound	Ext. Temp.	%Recovery	%RSD
DDT	150 °C	103	3.9
Endrin	150 °C	110	2.4
O-Toluidine	150 °C	104	10.3
Dichlorobenzidine	150 °C	106	13.2

- Spike DDT and Endrin on sand at 5 ppb level
- Measure recovery and monitor for the presence of DDD, DDE, Endrin Aldehyde and Endrin Ketone
- Monitor the recovery of other temperature sensitive compounds such as o-toluidine and dichlorobenzidine

TN 207: Investigation of Carryover with PAHs and PCBs

- 5 g of SRS sample (soil contaminated at 11%, N= 3)
 - First extract = 106.1% average recovery of PAH by HPLC
 - MDQ was 0.2 mg/kg, Certified concentration of PAHs ranged from 31 1500 mg/kg
 - Second extract (solvent blank) = PAHs not present
- 8 g of sediment from NIST(SRM 1939, 35% extractable, N=3)
 - First Extract = 101.8% average recovery of PCB by GC-ECD
 - MDQ 0.1 μg/kg, Certified concentration of PCBs ranged from 180 to 3700 μg/kg
 - Second extract (solvent blank) = PCBs not present

Using the ASE 350

1. Power on, automatic initialization

2. Turn on gas supply, set pressure to 1.03 MPa (150 psi)

3. Select and prepare appropriate solvents

4. Grind and mix samples with dispersants

5. Load samples into cells

6. Prime the system

7. Create/Load Method and Sequence

8: Run the Method or Sequence!

Selecting Solvents

Autoignition Point

Do not use solvent with autoignition point below 200 °C (carbon disulfide, diethyl ether, 1,4-dioxane)

Acids

Strong mineral acids should not be used (e.g. hydrochloric acid)

Sulfuric acid and nitric acid can be used at concentrations less than 0.1% by volume.

Weak Acids such as phosphoric or acetic acid can be used as extraction solvents in small percentages (< 5% by volume.

n-Hexane

Methanol

Quality

Use HPLC or pesticide grade organic or aqueous solvents.

Solvents do not need to be degassed.

Bases

Strong bases such as sodium hydroxide or potassium hydroxide can be used at concentrations less than 0.1% by volume.

Weak bases such as ammonia can be used at small percentages (< 5% by volume)

The Importance of Grinding Samples

Samples with large particle sizes should be ground prior to extraction.

This exposures more surface area that can be exposed to the solvent and improves extraction efficiency.

The Importance of Grinding Samples

Extraction of Fat From Mozzarella Cheese Hexane:IPA, 125 °C, gravimetric analysis

Thermo Fisher S C I E N T I F I C

Mixing the Sample – Dispersants and Resins

ASE Prep DE

Pelletized DE is used as a drying and dispersing agent for solid and semisolid samples. Prevents sample adhesion and compaction.

ASE Prep Cr H⁺ Form

Cation exchange resin in the hydrogen form that neutralizes strong bases in samples that have been pretreated using base hydrolysis.

ASE Prep MAP

Uses a proprietary polymer to absorb moisture in wet samples.

ASE Prep Cr Na⁺ Form

Cation exchange resin in the sodium form that neutralizes strong mineral acids in samples that have been pretreated using acid hydrolysis.

ASE Prep Sorbents

Sorbent Type	Typical uses	Recommended method of use
ASE Prep DE	Acts as a dispersant and drying agent (for samples containing up to 10% moisture).	Mix ASE Prep DE with the sample to form a homogeneous mixture prior to extraction
ASE Prep MAP	Used to remove moisture from samples containing 10-85% moisture.	Mix ASE Prep MAP with DE (1:1 ratio) with the sample prior to extraction
ASE Prep CR Na+	Used to neutralize acid hydrolyzed samples	Mix ASE Prep CR Na+ with ASE Prep DE (1:1 ratio) with the acid hydrolyzed sample prior to extraction
ASE Prep CR H+	Used to neutralize base hydrolyzed samples.	Mix ASE Prep CR H+ with ASE Prep DE (1:1 ratio) with the base hydrolyzed sample prior to extraction

Selecting the Sample Cell

Stainless Steel Extraction Cells

1 mL, 5, mL, 10 mL, 22 mL, 34 mL, 66 mL, 100 mL

Dionium Extraction Cells

66 mL, 100 mL

International Agency Acceptance of ASE

United States

U.S. EPA Method 3545A (OCP, OPP, BNA, TPH, PCDD, herbicides and semi-volatiles)

U.S. EPA Method 8267 (Toxaphene)

U.S. EPA Method 6860 (Perchlorate)

NOAA Method NWFS-NWFSC-59 (Hydrocarbons)

ASTM D-7210 (Polymer Additives)

National Standard NMX-AA-146-SCFI-2008 for PAHs in soils and sediments

China

Method GB/T 19649-2006 for 475 pesticides in grains and grain products

Method GB/T 23376-2009, pesticides in tea leaves

Method GB/T22996-2008, ginsenosides in ginseng

Method L00.00-34 for pesticides in foodstuffs

Key ASE Applications Summary

Industry	Analyte	Determinative Step	Matrix	Application Note
Environmental Polyaroma (PAHs)	Polyaromatic Hydrocarbons (PAHs)	GC-MS	Soil, Tissue	AN 1025
	Polychlorinated Biphenyls (PCBs)	GC-ECD	Soil, Tissue, PUFs	AN 1025
	Dioxins and Furans	GC-MS/MS	Sediment, brick, dust, ash	AN 10336
	Total Petroleum Hydrocarbons (TPH)	GC-FID	Soil	AN 324
	Base, Neutral, Acids (BNAs)	GC-MS	Soil	AN 317
Food	Fat Content	Gravimetric	Chocolate Meat Snack Foods Infant Formula	AU 344 AN 334 AN 321 AN 329 AU 195
	Oil Content	Gravimetric	Oil seeds (e.g. canola)	AU 325
	Pesticide Residues	GC-MS	Fruits, Vegetables, Animal Feeds	AN 332 AN 349
	Acrylamide	LC-MS	Coffee, Chocolate	AN 358
Natural Products	Herbal Marker Compounds	LC-UV	Plants	AN 362
	Active Ingredients in Herbal Supplements	LC-UV	Pills	AN 335
Chemical	Polymer Additives	LC-UV	Polymer Materials	AN 331
	Bioalcohol	Gravimetric	Biomass	AN 363
Pharma	Leachables & Extractables	LC-MS/MS	Drug Packaging	TBD
	Active Ingredients	LC-UV	Transdermal Patches	AN 327

Environmental Market

- PAHs & PCBs in Soils, Sediments, and Tissue
- 2 Dioxins in Dust, Brick, Sediment, and Ash
- Flame Retardants in Electronic Waste and Dust
- 4. BNAs in Soils and Sediments
- 5. Total Petroleum Hydrocarbons in Soils
- 6. Pesticides in Soil, Sediments, and Tissue
- 7. Toxaphene in Fish Tissue
- 8. Petroleum Hydrocarbons in Tissue
- 9. Persistent organic pollutants in sludges

Government Agencies

Water Treatment Plants

PAHs and PCBs

Simultaneous extraction and clean-up of PAH and PCB from mussels* and soil*

Parameter	Method 1	Method 2
Cell Size	66 ml	66 ml
Oven Temperature	125 °C	100 °C
Sample Size	5 g	5 g
Static Time	6 min	4 min
Static Cycles	4	5
Adsorbent	Acidic alumina	Acidic alumina
Flush Volume	40 ml (60%)	40 ml (60%)
Solvent	DCM	DCM
Nitrogen Purge	150 psi, 5 minutes	150 psi, 5 minutes

* Spiked samples with EPA 8270 PAH Base-Neutral Surrogate Mix, PAH Spike Mix, PCB surrogate (2,4,5,6-Tetrachloro-*m*-xylene) and Aroclor 1254.

Extraction of PAHs and PCBs From Mussel & Soil

PAH Recoveries – Mussel ($N = 6$)			PAH Recoveri	es – Soil (N =	6)			
Compound	% Recovery	SD	% RSD	1	Compound	% Recovery	SD	% RSD
Nitrobenzene-d5**	83.3	0.54	13.05	1	Nitrobenzene-d5**	94.6	0.81	17.20
2-Fluorobiphenyl**	95.1	0.43	9.13	1	2-Fluorobiphenyl**	101.2	0.25	4.87
p-Terphenyl-d4**	91.4	0.27	5.92	1	p-Terphenyl-d4**	102.1	0.10	1.94
Naphthalene	89.1	0.28	6.33	1	Naphthalene	79.0	0.47	6.29
Acenaphthylene	101.2	0.30	5.91	1	Acenaphthylene	76.3	0.21	5.44
Acenaphthene	98.3	0.28	5.65		Acenaphthene	102.9	0.33	6.40
Fluorene	107.5	0.46	8.65		Fluorene	80.3	0.21	5.31
Phenanthrene	104.6	0.30	5.70		Phenanthrene	114.8	0.37	6.39
Anthracene	100.1	0.29	5.77		Anthracene	91.4	0.51	11.19
Fluoranthene	97.1	0.30	6.24		Fluoranthene	103.6	0.12	2.23
Pyrene	88.9	0.24	5.31		Pyrene	97.4	0.14	2.90
Benzo(a)anthracene	85.4	0.21	4.85		Benzo(a)anthracene	99.0	0.17	3.35
Chrysene	95.5	0.27	5.66		Chrysene	91.2	0.09	1.90
Benzo(b)fluoranthene	91.7	0.31	6.72		Benzo(b)fluoranthene	96.3	0.14	2.82
Benzo(k)fluoranthene	88.3	0.20	4.43		Benzo(k)fluoranthene	92.8	0.13	2.70
Benzo(a)pyrene	89.9	0.28	6.29		Benzo(a)pyrene	83.0	0.23	5.52
Benzo(ghi)perylene	94.1	0.31	6.60		Benzo(ghi)perylene	82.4	0.13	3.22
Dibenzo(a,h)anthracene	92.3	0.28	6.06		Dibenzo(a,h)anthracene	78.9	0.15	3.68
Indeno(1,2,3-cd) pyrene	91.1	0.31	6.72		Indeno(1,2,3-cd) pyrene	84.6	0.11	2.65
PCB Recoveries – Mussel (N = 6)			PCB Recoverie	es – Soil (N =	6)			
Compound	% Recovery	SD	% RSD		Compound	% Recovery	SD	% RSD
2,4,5,6-tetrachloro-m-xylene**	93.1	0.48	5.21		2,4,5,6-tetrachloro-m-xylene**	86.7	1.2	4.72
Aroclor 1254	95.9	0.06	3.26		Aroclor 1254	101.6	0.19	3.15

Table 2. Data for mussel and soil samples extracted by Method 1.

**Surrogate Spike

Recovery Ranges from 83 – 107 %

Food and Beverage Market

- 1. Acrylamide in Bread and Chips
- Total fat from dairy, powdered milk, meat, and infant formula
- 3. Mycotoxins from wheat and corn
- 4. Fat from chocolate and oil seeds
- 5. Total unbound fat in snack foods
- Pesticides from oyster tissue
- 7. Pesticides in multiple types of food samples
- Perchlorate in vegetation
- 9. Active ingredients in dietary supplements
- 10. Pollutants in dietary supplements

- **Government Agencies**
- **Dietary Supplements**

Food Manufacturers

Dioxins and Furans – Fish Tissue (CRM)

Compound	Soxhlet (ng/kg)	ASE (ng/kg)	Certified
2,3,7,8-TCDD	7.6	7.6	6.6
1,2,3,4,8-PCDD	4.3	4.3	4.4
1,2,3,4,7,8-HCDD	1.4	1.4	1.9
2,3,4,7,8-TCDF	13.4	12.6	11.9
1,2,3,7,8-PCDF	5.4	5.1	5.0
1,2,3,4,7,8-HCDF	12.5	12.2	12.2
OCDD	12.4	6.4	6.3

ASE yields equivalent results to Soxhlet while using less time and solvent

Pesticides from Oyster Tissue

Compound	Recovery (%) ASE Prep MAP (n = 3)	Recovery (%) Sodium Sulfate (n = 3)
Lindane	91	81
Heptachlor	93	64
Aldrin	94	66
Dieldrin	105	75
Endrin	106	70
DDT	114	69
Total	101	71

ASE Prep MAP yields higher recoveries than sodium sulfate

Pesticides in Food

Recovery of polychlorinated pesticides in raw banana

Compound	Recovery (%) (n = 3)	SD (µg/kg)	RSD (%)
α-BHC	100.3	2.3	2.3
β-ΒΗϹ	102.2	2.3	2.3
ү-ВНС	98.9	3.2	3.2
Heptachlor	89.2	7.6	8.5
Aldrin	89.4	2.2	2.5
Dieldrin	93.7	1.6	1.7
4-4' –DDE	92.1	1.8	1.9
2,4' – DDD	95.4	2.5	2.6
Endrin	94.4	2.7	3.0
4,4' – DDT	89.6	5.8	6.4

Pesticides in Food

Recovery of polychlorinated pesticides in raw potatoes

Compound	Recovery (%) (n = 3)	SD (µg/kg)	RSD (%)
α-BHC	96.3	6.3	6.6
β-ΒΗϹ	108.6	2.3	2.1
ү-ВНС	97.4	6.6	6.8
Heptachlor	93.9	3.5	3.7
Aldrin	95.9	3.3	3.4
Dieldrin	97.1	0.55	0.6
4-4' –DDE	95.4	0.7	0.7
2,4' – DDD	95.7	0.85	0.9
Endrin	97.8	1.8	1.9
4,4' – DDT	93.0	4.5	4.8

Fat Extraction from Food using Acid Hydrolysis, GC-MS Data

Food		ASE [®] Method- Resin Lipid (%)	Mojonnier Method Lipid (%)
Corp China	AVG	29.85	30.41
Com Chips	RSD	1.1%	1.2%
Mayannaiaa	AVG	74.25	75.11
wayonnaise	RSD	0.58%	1.2%
Parmesan	AVG	26.27	26.41
Cheese	RSD	0.84%	1.1%
Pologno	AVG	28.60	28.58
Bologna	RSD	1.3%	0.97%
Shortoako	AVG	14.07	13.95
Shoricake	RSD	0.32%	0.24%

pH Hardened Pathways Allow the Use of Acids

Extraction of Perchlorate from Vegetation

- Challenging for sample preparation
- Many interferences can be co-extracted
- EPA method labour intensive and time consuming*
 - 20 h for extraction
 - 20+ h for cleanup
- Can ASE® be used to address labour and time?

*Ellington and Evans, J. Chromatography. A, 2000, 898 193–199

Off-line Cleanup

- Oven-dried samples (5 g) mixed with diatomaceous earth
- Extraction with standard ASE® conditions
 - D. I. water, 125 ° C, 1500 psi, 17-min total time
- SPE cleanup of extracts with alumina and C18

In-line Cleanup

- Oven-dried samples (5 g) mixed with diatomaceous earth
- Samples loaded into cell containing alumina/C18 in outlet
- Extracted with standard ASE conditions
 - D. I. water, 125 ° C, 1500 psi, 17-min total time
- Extracts analyzed without cleanup

Schematic of In-Line Cleanup in ASE[®] Cell

Perchlorate Conclusion

- ASE[®] can be used as a sample extraction/cleanup procedure prior to the determination of perchlorate in soils and plant materials
 - Alumina/C₁₈ in ASE cell (in-line) can provide clean extracts ready for analysis
 - Total time is less than 20 min for extraction and cleanup
- Automation of ASE improves the precision of the analytical scheme and increases sample capacity
- Same ASE instrument can be used for both ionic and non polar contaminants

ASE® Extraction of Mycotoxins

- Naturally occurring toxins produced by moulds
- Over 400 have been identified
 - Based on toxicity and occurrence the following are of highest concern
 - Aflatoxins, Vomitoxin, Fumonisin, Zearalenone, T-2 Toxin
- In the livestock industry mycotoxins are found predominantly in animal feeds

Extraction of Fumonisin from ASE[®] Conditions

Sample Size	10 g of Corn Meal Flakes + 3 g DE 0.5 mL Acetic Acid Spiked onto the Sample in the Cell
Solvent	MeOH/Water (75/25)
Temperature	75 °C
Pressure	1500 psi
Static Time	3 Min
Flush Volume	40%
Purge Time	120 Sec

Recovery of Fumonisin from Corn Meal

Amount (ug/kg)		
Sample	CEN Method ASE®	
Corn Meal 1	550 600	
Corn Meal 2	690 738	
Corn Meal 3	700 806	
Corn Meal 4	Non-Detect 91	

Extraction of Aflatoxins from ASE® Conditions

Sample Size	20 g Corn, Oats, or Peanuts
Solvent	Acetonitrile (MeCN)
Temperature	75 °C
Pressure	1500 psi
Static Time	5 Min
Flush Volume	75%
Purge Time	100 Sec
Total Time	17 Min per Sample
Analysis	HPLC/Fluorescence after Filtering

Recovery* of Spiked Aflatoxins

Matrix	Aflatoxins			
Watrix	G ₂	G ₁	B ₂	B ₁
Sand	90.7 (4.8)	93.8 (6.3)	73.1 (3.8)	100.1 (11.6)
Oats	79.4 (3.1)	90.7 (7.6)	86.7 (4.9)	87.9 (6.0)
Corn	104.4 (7.3)	92.9 (1.3)	78.3 (14.9)	91.9 (3.2)
* %Recovery (%RSD), n=3; Spiking Level at 1 ppm				

The Effects of Solvent Selection

Fat Determination in Powdered Infant Formula (SRM 1846)

The Effects of Temperature

Fat Extraction from Powdered Infant Formula (SRM 1846)

100 vs.125 °C, 3 static cycles, gravimetric analysis

Solvent Selectivity in ASE

Head	Mecter Mecter	Acetom.	Pre o'c	Henne	
				-	
Water	methar	hol. aceto	- DCM	A hexane	2

Tobacco Extracts

What does selectivity achieve?

- Isolates only the analytes of interest
- Retains or removes interfering compounds

Blueberry Extracts

How to make extractions selective

- Solvent choice adjust polarity
- Adding sorbents alumina for fat retention
- Lowering temperature less coextractables

Use of Adsorbents Improves Selectivity

Accelerated Solvent Extr Techniques for In-Line Se Removal of Interferences	action elective
Introduction Interferences may be extracted along with desired analytes during an extraction process. These unwanted to extractables may interfere with analyte detection detomanyappic techniques such as a ple-perceition dromatography (GFC) or a glass cohump packed with specific adorbern as used to purify supple extract prior to separation and analysis. Recret advances using accelerated solver extraction systems as described in several publications, 1,3-13-12-17 include procedures for selective removal on interference during sample extraction.	Selective Extraction of Nonpolar Compounds In an effort to eliminate post-extraction deama yety, we and others have researched the abilition of various adsorbers to the extraction cell. For many sample types, entracting the entraction of the selection of the selection central that are able for direct analysis. For example, nonpolar lipids are often so-extracted from fish tissue. Adding alumina direct adding the selection of the selection by along in a drying over at 300 °C for 15 bit to the extraction cell before adding the sample or sample maxime has been shown to prevent the extraction of unwared lipids. Mixing the sample with CH series (122) has been the sample with CH series (122) has been

hus combining extraction and purification into a single step. shown to retain organic This application are unmarkers seen accelerated solver This application are unmarkers seen accelerated solver extraction procedures developed to remove co-extractive material from writes markers to seedericy extract polar compounds from high-rich samples and to the use of the second solver and the second solver terms are used. We marker the second solver terms are used. The second solver terms are used solver terms are used. The second solver terms are used fractionate lipids from biological samples

xtraction cleanup steps, I the addition of various ell. For many sample types, essful in producing clean ct analysis. For example, tracted from fish tissue. kide, Al₂O₂, acidic, active 350 °C for 15 h) to the he sample or sample mixtur extraction of unwanted h C18 resin (1:2) has been aminants. (C18 bonded silica solvent extraction solvent choice impacts the retention of unwanted components. For example, a mixture of This note is intended to serve as a guide to develop accelerated solvent extraction methods. For more information please refer to the original publication cited with each method described below, or contact to. extraction, a cleanup step is usually required to remove co-extracted lipids. Adding alumina to an extraction cell

concurrence inputs, vacaning animum to an extraction cen-and extracting with hexane can prevent the extraction of interferences. However, if hexane/acetone [1:1] is used as the extraction solvent, almost no lipid material will be retained on the alumina. Table 1 lists two types of fat retainers and the ratio of each required to retain fat when tusing nonpolar solvents. Table 2 lists common adsorbents that are used for selective extraction of compounds using accelerated solvent extraction systems.

Adsorbent and Uses		
Carbon	Removes organics and nonpolar compounds	
Copper	Removes sulfur	
Ion-exchange Resins	Removes organics, ionic interferences for IC and IC/MS analysis	
C ₈ - C ₁₈ Resin	Removes organics, polar compounds, lipids, colors	
Acid-impregnated Silica Gel	Removes lipids	
Alumina	Removes nonpolar lipids colors	
Florisil	Removes nonpolar lipids	
Silica Gel	Removes nonpolar lipids	

Thermo SCIENTIELC

TN 210: In-Line Removal of Interferences

In-Cell Adsorbents May Eliminate the Need for Offline Clean Up Procedures

ASE In-Line Clean-up

Schematic of the Cell

Thermo Fisher S C I E N T I F I C

Use of Adsorbents Improves Selectivity

Preparation of the Extraction Cell for the Selective Extraction of PCBs from Fish Meal Preparation of the Extraction Cell for the Selective Extraction of Perchlorate from Vegetation

Integrated Clean-Up: Salmon Extracts

Extracts With and Without In-Cell Clean-Up of Fish Tissue Using Alumina, Silica Gel, and Acidic Silica Gel (40% H₂SO₄)

ASE reduces Extraction Time

Technique	Average Extraction Time
Soxhlet	4 - 48 Hours
Automated Soxhlet	1 – 4 Hours
Sonication	0.5 – 1 Hour
Microwave*	0.5 – 1 Hour
ASE	0.2 – 0.3 Hour

Extraction times are based on a per sample basis. This estimate of time does not include sample weighing, sample loading, or sample concentration.

*Requires cooling and offline filtration which adds ~40 minutes of processing time per sample

ASE reduces Solvent Use

Technique	Average Amount of Solvent Used
Soxhlet	200 – 500 mL
Automated Soxhlet	50 – 150 mL
Sonication	150 – 200 mL
Microwave	25 – 50 mL
ASE	15 – 45 mL

Solvent usage is determined on a per sample basis.

Sample Preparation Productivity

For Any Queries Contact : Chanakya Thaker : 9769109963 (<u>chanakya.thaker@thermofisher.com</u>) Chetan Chaudhari : 7738714447 (<u>chetan.chaudhari@thermofisher.com</u>) Ganesh N : 9892048258 (<u>ganesh.n@thermofisher.com</u>) Santosh Gunaga : 9880175960 (<u>santosh.gunaga@thermofisher.com</u>)

